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ABSTRACT

We describe our winning solution to the KDD Cup 2021 Open Benchmark Challenge. We tackle
the task of academic paper classification within a heterogeneous graph containing paper, author and
institution nodes. We present an efficient model based on our previously introduced algorithms:
EMDE and Cleora, on top of a simplistic feed-forward neural network. Our solution can be trained
on a single commodity 16 GB GPU, taking around 40 minutes per model. We achieve the 1st place
with 0.7454 test accuracy on the initial leaderboard, and 0.7460 test accuracy on the final evaluation
set. We release the source code at: https://github.com/Synerise/kdd-cup-2021
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1 Introduction

This paper describes one of the winning systems in the KDD Cup 2021 Open Graph Benchmark Challenge, MAG240M-
LSC task. The task consists of predicting subject areas of papers in a heterogeneous academic graph. The dataset is
extracted from the Microsoft Academic Graph (MAG) and contains 121M academic papers written in English. The
paper set is written by 122M author entities, who are affiliated with 26K academic institutions. There are 3 kinds of
relations in the graph: cites (between 2 paper nodes), writes (between author node and paper node), and affiliated with
(between author node and instutition node). Each paper is represented by a RoOBERTa sentence encoder embedding its
title and abstract. Out of 121M paper nodes, only approximately 1.4M nodes are arXiv papers annotated with their
subject areas, e.g., cs.LG (Machine Learning).

The task is to predict the primary subject areas of the given arXiv papers, which is cast as an ordinary multi-class
classification problem among 153 classes. The evaluation metric is the classification accuracy.

Data is split by time, with the trainset composed of arXiv papers published until 2018, validation set - of the 2019
papers, and testset - of the 2020 papers. The split reflects the practical scenario of helping the authors and moderators
annotate the subject areas of the newly-published arXiv papers.

We tackle the task with an efficient model based on our previously introduced algorithms: EMDE and Cleora, on top
of a simplistic feed-forward neural network. We use EMDE to represent nodes in the form of sketches - structures
representing local similarity, which additionally allow for easy accumulation of multiple object values (e.g. for a joint
representation of the contents of multiple cited papers). We use Cleora for label propagation, i.e. representing nodes
with sets of labels observed in the training data. We achieve the 1st place with 0.7454 test accuracy on the initial
leaderboard, and 0.7460 test accuracy on the final evaluation set.
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Figure 1: EMDE architecture overview. Example of creating an aggregated sketch of cited papers as input to a feed
forward neural network.

2 Preliminaries

Our solution is composed of multiple features computed with our previously introduced algorithms: the Efficient
Manifold Density Estimator (EMDE) [Dabrowski et al.,[2021]], Cleora [Rychalska et al., 2021[], and Fourier Feature
Encoding. We briefly introduce each of them in this section and then proceed to describe the full model in Section 3.

2.1 EMDE

Efficient Manifold Density Estimator (EMDE) introduced in [Dabrowski et al.;2021]] is a probability density estimator
inspired by Count-Min Sketch algorithm (CMS) and local sensitive hashing (LSH). The overview of the algorithm
is shown in Figure[I] EMDE ingests input data represented by vectors embedded on manifolds spanned by various
upstream representation learning methods. The manifolds are then partitioned with the data-dependent LSH method
(DLSH). The partitioning method divides the manifold into regions, analogous to CMS buckets. The purpose of
manifold partitioning follows the logic of LSH: similar data points should be mapped to the same region. While a
single region is large (typically 64-256 regions form a single partitioning covering the whole manifold, as described in
[Dabrowski et al., [2021]]), multiple independent partitionings allow to obtain a high resolution map of the manifold
via intersection or ensembling. The number of regions on a single manifold is further denoted as sketch_dim (2X in
Figure([T), and the number of independent divisions - as sketch_depth (N in Figure T).

The resulting region assignment vectors (sketches) can be thought of as a form of a histogram. Each position within a
sketch corresponds to a region, and each value represents the number of data points in the given region. For example,
a sketch of an item (e.g. of a single academic paper) can take the form of I = [0,0, 1,0, 0], which means that the
data point in question is located in region number 2 out of 5 total regions. All items are represented with sketches
of the same dimensionality, and representations of item sets are computed by simple summation of individual item
sketches. For example, a unordered collection of 4 academic papers can be represented as sketch S = [1,0,2,0, 1]
containing 4 papers in total, one located in region number 0, two in region number 2, and one in region number 4.
EMDE precomputes sketch representations of all items within the inventory, and computes aggregate representations of
desired item sets.

2.2 Cleora

Cleora [Rychalska et al., 2021] is a fast and efficient node embedding technique. Cleora combines intuitions from both
random walk-based methods as well as graph convolutional networks (GCNs) into a simple solution. Instead of sampling
individual random walks, we consider all possible random-walk transitions in a Markov transition matrix. Multiplication
of vertex embeddings by this matrix allows to perform all possible random walks in parallel, with one large step. Cleora
is further motivated by the surprising observation that in GCNs, the effect imposed by non-linearities and dense layers
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in between convolutions does not increase the expressive power, but rather normalizes and stabilizes the embeddings.
Graph convolutions perform a neighborhood smoothing operation and for many purposes all other GCN operations
are redundant, as shown in [Wu et al., 2019} |/Oono and Suzukil,|2020]. This operation is emulated within Cleora with
the iterative matrix multiplications. Cleora marks significant gains in speed due to its simple algorithm and efficient
implementation in Rust. At the same time, it is shown to achieve competitve results compared to other recent methods on
tasks such as link prediction and node classification. Cleora is publicly available at https://github.com/Synerise/cleora.

2.3 Fourier Feature Encoding

Fourier Feature Encoding is a way to sidestep the necessity of explicit normalization of model inputs. Instead of feeding
a single input feature, we transform it into a 16-dimensional vector. First, an input numeric value is divided by a few
numbers representing increasing scale levels (in our case, 8 scale levels represented by powers of 2). Then, each of
the 8 results is fed to sin and cos functions. The numeric significance of the feature is thus represented on multiple
levels, and in a numerically stable way as any number is brought to a small numeric interval defined by trigonometric
functions. Below we present a code snippet of the Fourier Feature Encoding.

import numpy as np

def multiscale(x, scales):
return np.hstack ([x.reshape(-1,1)/pow (2., i) for i in scales])

def encode_scalar_column(x, scales=[-1, 0, 1, 2, 3, 4, 5, 6]):
return np.hstack([np.sin(multiscale(x, scales)), np.cos(multiscale(x, scales))

D

3 The Full Challenge Solution

The model architecture itself is very simple - it is a 4-layer residual feed forward neural network with 3500 neurons in
each hidden layer, with leaky ReLU activations and batch normalization, and with 153 outputs representing the possible
arXiv classes. The most elaborate part of our solution are the input features, which are precomputed and fed as model
input in the form of a large concatenated vector.

Feature computation starts with precomputing some models which will be needed later:

1. Fitting EMDE on RoBERTa embeddings. We run EMDE on the RoOBERTa embeddings of all papers, using
sketch_dim = 256 and sketch_depth = 40. This way we partition the embedding space into 256 regions,
repeating the procedure 40 times independently. Papers similar in terms of RoOBERTa embeddings are expected
to fall into the same regions often, as per the Locality-Sensitive Hashing paradigm. The resulting per-paper
sketches have dimensionality 40 x 256 = 10240.

2. Precomputing Cleora embeddings for papers and authors. We form a single large adjacency matrix,
treating author and paper nodes in exactly the same way. A value of 1 is inserted for pairs of nodes citing each
other and for author-paper pairs.

(a) Label propagation in Cleora inputs. Embedding computation proceeds exactly as in Cleora, with the
exception of node embedding initialization. Concretely, the papers which do have assigned labels are
initialized with a one-hot-encoded vector expressing their labels (a value of 1 at the index denoting
specific label assignment). Similarly, author node embeddings, when the author has some papers with
labels, are initialized with a summed and normalized one-hot encoded vector of paper labels. Nonlabeled
nodes have the embedding initialized to all-zero vectors. Thus, the embedding dimensionality is 153 for
all entities, with most of them having been initialized randomly, and some based on their label assignment.

(b) Cleora training. Cleora training is done on a half of all labelled nodes in the trainset, the other half is
used for full model training, with its labels used as output. This is to prevent information leaks between
Cleora embeddings and model outputs. Cleora is trained with 2 iterations.

3. Precomputing Cleora embeddings for institutions. Institutions are embedded with Cleora using the clique
expansion scheme [Rychalska et al.,|[2021]]. A single clique is formed per author, so whenever an author
belongs to multiple institutions, all these institution nodes are connected with each other. The graph consists
of only one node type: the instutution node and embeddings are computed with 3 Cleora iterations.

4. Fitting EMDE on institution embeddings from Cleora. Similarly as with RoBERTa, a new instance of
EMDE is fitted on Cleora institution embeddings. This time the sketch dimensions can be smaller, with the
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embedding space divided into 128 regions and the procedure repeated 40 times independently. Resulting
sketches have dimensionality 40 x 128 = 5120.

Having completed the aforementioned steps, we have Cleora embeddings for two types of nodes: papers and authors.
We also have two fitted EMDE models for computing sketches of papers and institutions. We then proceed to compute
input features for the neural network:

1. Paper vector representation. ROBERTa paper embedding.

2. Three width-wise L2-normalized, concatenated papers sketches: cited papers sketch that represents a sum-
mary content value of the cited papers, citing papers sketch represents papers which cited the given paper,
and authors papers sketch that is an aggregation of all other papers of given paper authors. We aggregate
each sketches with a simple element-wise summation followed by L2 normalization across sketch_dim. This
can be done as EMDE sketches are piecewise-additive and the resulting structure retains sketch properties
and shape. This aggregate sketch forms a 3 % 40 * 256 = 30720-element component of the input vector to the
neural network. We take care to always include papers from the same year or older that the current paper in
order not to break the temporal logic

3. Institutions sketch. An aggregate L.2-normalized sketch of institutions to which the paper authors belong.

4. Label representation of neighbors. We treat the following 3 types of nodes as neighbors: cited papers, citing
papers, another papers of the same authors. For each neighbor node with labels, a one-hot-encoded label
vector is created, and all such vectors of all adjacent papers are summed and L2-normalized. This results in a
153-item vector for each of the 3 neighbor types. Furthermore, we calculated such vectors for papers which
are 2 hops away in the graph from the current paper - i.e. "papers cited by papers cited by the current paper".
We only include papers older than the current paper. Additionally, these vectors are precomputed separately
for different timespans in 3 versions: 1) including older examples, 2) including examples from 1 year ago, 3)
including examples from 2 years ago. This serves to increase model robustness against the variability of labels
over time.

5. Cleora-propagated label representation of neighbors. Similar to point 4), but instead of true labels, utilizing
labels propagated by Cleora from the unmasked to the masked part of the dataset. We computed these vectors
separately for papers from the same year as current paper and for all not newer publications.

6. Cleora representation of paper. Cleora embedding representation of given paper.

7. Cleora representation of paper authors. Summation of L2-normalized Cleora vectors of all authors of the
paper.

8. Numerical features. We also include simple features expressed with a single number, which are: the number
of cited papers, the number of papers which cite the given paper, the number of another papers of the authors,
the number of authors, publication year. Additionally, we include all L2 norms of all label representation
vectors before normalization computed in points 4-6. All of these are encoded with our Fourier Feature
Encoding.

In summary, we obtain a concatenated input vector of length 41381 per example.

3.1 Model Training

The model is written in PyTorch. We train on a single NC24s v3 Azure instance with Intel Xeon CPU ES-2690 v4
@ 2.60 GHz (441 GB memory), using 1 Tesla V100 16 GB GPU. Training a single model takes around 42 minutes,
and inference takes around 7 minutes. We use AdamW optimizer [Loshchilov and Hutter, 2017] with first momentum
coefficient of 0.9 and second momentum coefficient of 0.999 (Standard configuration recommended by [Kingma and
Bal 2014])) with weight decay of 0.01 and a mini-batch size of 512 for optimization. The model was trained for 2
epochs, the first with a greater learning rate of 0.0001 and the second with a smaller learning rate of 0.00005. We
observe performance gains after sorting the dataset according to date, so we apply this in the final submission.

To achieve maximal performance, we train 60 independent ensemble models. Training of a single ensemble requires
independent sampling of the 1/2 labeled nodes for Cleora computation, while the rest is used for training. For final
submission, we train on train set combined with the validation set.

3.2 Results

The metric used in the challenge is the classification accuracy. Our score on hidden test set on initial leaderbord is
0.7454 compared to the best baseline model R-GAT [[Velickovic et al., | 2017]] which achieved 0.6949 accuracy score.
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4 Conclusions

In this report we have described our solution to the KDD Cup 2021 Open Graph Benchmark Challenge, MAG240M-LSC
task. Our system achieves 0.7454 accuracy on the initial leaderboard (1st place) and 0.7460 on the final testset. We have
shown that a combination of EMDE and Cleora algorithms builds a very successful architecture for node classification
in massive heterogeneous graphs.
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