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ABSTRACT

WikiKG90M in KDD Cup 2021 is a large encyclopedic knowledge graph, which could benefit
various downstream applications such as question answering and recommender systems. Participants
are invited to complete the knowledge graph by predicting missing triplets. Recent representation
learning methods have achieved great success on standard datasets like FB15k-237. Thus, we train
the advance algorithms in different domains to learn the triplets, including OTE, QuatE, RotatE and
TransE. Significantly, we modified OTE into NOTE (short for Norm-OTE) for better performace.
Besides, we use both the DeepWalk and the post-smoothing technique to capture the graph structure
for supplementation. In addition to the representations, we also use various statistical probabilities
among the head entities, the relations and the tail entities for the final prediction. Experimental results
show that the ensemble of state-of-the-art representation learning methods could draw on each other’s
strength. And we develop feature engineering from validation candidates for further improvements.
Please note that we apply the same strategy on the test set for final inference. And these features may
not be practical in the real world when considering ranking against all the entities.

Keywords Knowledge Graph Completion · Knowledge Embedding · Ensemble Method

1 Introduction

Knowledge graphs are directed multi-relational graphs about facts, usually expressed in the form of (h, r, t) triplets,
where h and t represent head entity and tail entity respectively, and r is the relation between head entity and tail entity,
e.g. (Geoffrey Hinton, citizen of, Canada). Large encyclopedic knowledge graphs, like Wikidata [Vrandecic and
Krötzsch, 2014] and Freebase [Bollacker et al., 2008], can provide rich structured information about entities and benefit
a wide range of applications, such as recommender systems, question answering and information retrieval. However,
large knowledge graphs usually face the challenge of incompleteness. For example, 71% of people in Freebase have no
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Figure 1: Impute missing triplets in knowledge graphs.1

birth place and 75% have no nationality [Dong et al., 2014]. Therefore, predicting these missing facts in a knowledge
graph is a crucial task, also named as knowledge graph completion task. We can see Figure 1 for a clear understanding.

In order to address the issue of knowledge graph completion on large knowledge graphs, the 2021 KDD cup releases
the WikiKG90M-LSC Task, which focuses on imputing missing facts in a knowledge graph extracted from the entire
Wikidata knowledge base. Our method for this task consists of two stages: On the first stage, we propose an ensemble
method for different knowledge embedding methods to build a strong model, in which, knowledge embedding methods,
like TransE [Bordes et al., 2013] and RotatE [Sun et al., 2019], focus on embedding entities and relations into vectors
and then we can use these embeddings to predict missing relations. On the second stage, we adopt several statistical
features of the WikiKG90M dataset to help improve the final ensemble model performance. We conducted several
experiments on WikiKG90M dataset to demonstrate the superiority of our method, and our team is currently among the
awardees of the WikiKG90M-LSC track of the OGB-LSC, where we achieve 0.9727 MRR result in the final test set.
Some features from test candidates are used in final inference, which are not practical when considering ranking against
all the entities. And its limitation will be discussed in Section 2.2.4.

2 Methodology

2.1 Representation Learning

2.1.1 Triplet Embedding

The majority of knowledge graph representation algorithms relies on the triplets and they remain good interpretability
in graph reasoning. In this competition, we adopt advance algorithms in different domains to encode the entities and
relations, including NOTE, QuatE, RotatE and TransE. Considering the properties of each model, we ensemble their
score results for the final prediction.

NOTE Tang et al. [2020] proposes OTE to model the symmetry/antisymmetry, inversion, and composition patterns.
It takes the relations as an orthogonal transform in a high dimensional space. Relation matrix is orthogonalized so its
inverse matrix can be obtained by simple transposing. The full model can be seen as an ensemble of K OTE models.
The score functions are defined as Eq. 1 and 2.

d((h, r), t) =

K∑
i=1

(‖shr (i)φ(Mr(i))eh(i)− et(i)‖), (1)

d(h, (r, t)) =

K∑
i=1

(‖str(i)φ(Mr(i))
T et(i)− eh(i)‖), (2)

where shr (i) = diag(exp(sr(i))) and str(i) = diag(exp(−sr(i))) are the weights of relation matrix, φ is the Gram-
Schmidt process.

1https://ogb.stanford.edu/assets/img/ogblsctaskoverview.png
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However, though Tang et al. [2020] has scaled the L2 norm of relation embeddings through scalar tensors sr(i) ∈ Rds ,
the convergence is still unstable in our experiments. The exp operation in shr (i) and str(i) enlarges values and could
lead to this issue. Therefore, we further use L2 norm to regularize the scalar tensors. In this case, the weights of relation
matrix are modified into Eq. 3 and 4. We denote such modified version as NOTE (short for Norm-OTE).

shr (i) =
diag(exp(sr(i)))

‖diag(exp(sr(i)))‖
, (3)

str(i) =
diag(exp(−sr(i)))
‖diag(exp(−sr(i)))‖

. (4)

QuatE Zhang et al. [2019] extend ComplEx [Trouillon et al., 2016] into quaternion space for better geometrical
interpretations and more latent inter-dependencies. It proves that the Hamilton product in quaternion space can model
both symmetry/antisymmetry and inversion patterns except the composition pattern.

RotatE RotatE can be view as an orthogonal transform in complex domain. Each relation is taken as a rotation from
the head entity to the tail entity. Sun et al. [2019] has proved that the Hadamard product is able to model various relation
patterns. In theory, it has equivalent model capability as OTE, so we also take it as a basic method.

TransE Bordes et al. [2013] interprets relationships as translations operating on entity embeddings in a real field.
Although such assumption is not able to model complex relationships such as 1-N, N-1 and N-N, experiments on
different datasets have proved its robustness and it can model composition pattern. Thus, we use results of this model to
ensemble in our experiments.

2.1.2 Graph Context

Besides the specific triplets, the structure of sub-graphs comprised of triplets also reflect some semantic information. For
example, Geoffrey Hinton in Figure 1 is connected with King’s College Cambridge through relation Graduated from.
We can infer that Geoffrey Hinton should be a person and is probable to be born in UK, as King’s College Cambridge is
located in UK. Entities and relations in this sub-graph influence each other. To supplement information of the graph
structure, we use representative techniques such as Post-Smoothing [Klicpera et al., 2019] and DeepWalk[Perozzi et al.,
2014].

Relation-based Post Smoothing We propose a two-stage method to capture the relationships among the entities in
sub-graphs. Recent end-to-end models always use graph neural networks as encoder and triplet-based methods as
decoder. But in our implementation, we take the opposite approach. In the first stage, we train TransE to encode the
entities and relations according to the triplet context. In the second stage, we take the learned representations as entity
embeddings. Then we propagate them through the entity adjacent matrix. A hyperparameter α decides the weight of
the entity itself while 1− α denote weights of its neighborhood. The final updated embeddings are used for prediction.
For example, for a given entity u, the final embedding u′ is represented in Eq. 5.

u′ = αu+ (1− α)
∑

v∈N (u)

f(v, r), (5)

where u and v are the embedding learned in the first stage. f is depending on the knowledge embedding algorithm.

DeepWalk Perozzi et al. [2014] propose DeepWalk to learn latent representations of nodes in homogeneous networks.
In our solution, the relations in knowledge graph are ignored. We focus on the entity structure and use skip-gram
technique to learn the semantic and structural correlations between entities along generated paths.

2.2 Manual Feature Engineering

In addition to embedding models, manual feature engineering is also a key part of our work. Since our goal is to predict
tail through head and relation, our manual features include two parts, head to tail feature and relation to tail feature.
Feature selection needs to be performed after obtaining the features.

3
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Figure 2: The walk paths of head to tail features. The yellow arrow is a direction of head entity to tail entity. HT is walk
in the direction of head to tail, while TH is in direction of tail to head.

2.2.1 Head to Tail Features

Head to tail feature is to predict the probability of tail by the current head. We start to walk from the head, and calculate
the probability of walking through different paths to reach tail. For a head, relation and tail triple, it has 6 different walk
directions direct, including head to tail(HT), head to relation(HR), relation to head(RH), relation to tail(RT), tail to
head(TH), tail to relation(TR). The probability of e1 to e2 in direction direct is as fallow.

Pdirect(e1, e2) =
Sdirect(e1, e2)∑

e∼Ndirect(e1)
Sdirect(e1, e)

(6)

Sdirect(e1, e2) is the frequency of e1 to e2 in the direction of direct. When developing our model, we calculated all
features from the training triplets and validation candidates. It is worth nothing that we only calculate the FHT and
FRT from test data at the final inference time, without modifying the weight of our developed models. And we apply
the same rule strategies developed from validation for final test prediction. That is to say, test data is only touched at the
final inference time.

We define 7 manual head to tail feature as follow.

FHT (h, t) = PHT (h, t) (7)

FTH(h, t) = PTH(h, t) (8)

FTH−HT (h, t) =
∑

e∼NTH(h)∩NTH(t)

PTH(h, e) ∗ PHT (e, t) (9)

FHT−HT (h, t) =
∑

e∼NHT (h)∩NTH(t)

PHT (h, e) ∗ PHT (e, t) (10)

FHT−TH(h, t) =
∑

e∼NHT (h)∩NHT (t)

PHT (h, e) ∗ PTH(e, t) (11)

FTH−TH(h, t) =
∑

e∼NTH(h)∩NHT (t)

PTH(h, e) ∗ PTH(e, t) (12)

FHT−HT−TH(h, t) =
∑

e1∼NHT (h)

∑
e2∼NHT (t)

PHT (h, e1) ∗ PHT (e1, e2) ∗ PTH(e2, t) (13)
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2.2.2 Relation to Tail Features

We also define 5 manual relation to tail feature as fallow.

FRT (r, t) = PRT (r, t) (14)

FRH(r, t) = PRH(r, t) (15)

FRT−TR−RT (r, t) =
∑

e1∼NRT (r)

∑
e2∼NTR(t)

PRT (r, e1) ∗ PTR(e1, e2) ∗ PRT (e2, t) (16)

FRH−HR−RT (r, t) =
∑

e1∼NRH(r)

∑
e2∼NHR(t)

PRH(r, e1) ∗ PHR(e1, e2) ∗ PRT (e2, t) (17)

FRT−HR−RT (r, t) =
∑

e1∼NRT (r)

∑
e2∼NHR(t)

PRT (r, e1) ∗ PHR(e1, e2) ∗ PRT (e2, t) (18)

2.2.3 Feature Selection

In order to combine the above-mentioned features and models, we use grid search for feature selection. The grid search
will output the weights of the embedding models and manual features.

2.2.4 Limitation Discussion.

In practical scene, the tail entities follow the long tail distribution. Finding candidates from all entities involves a very
complicated process with strategies like rules and approximate nearest neighbor searching. However, different from our
actual application, in this competition, candidates are provided from uniform distribution together with long tail ground
truth according to the task description paper from Hu et al. [2021]. Therefore, it comes a simple strategy to narrow the
candidate choices by dropping tail entities with low frequencies counting from candidates. But the long tail relations
still depend on the Knowledge Embedding strategies, which can be found in our experimental results. To narrow the gap
between competition and practical application in the real scene, we suggest that the candidates should not be provided.

3 Experiments

3.1 Experimental Details

Original WikiKG90M dataset contains three time-stamps: September, October, and November of 2020, for training,
validation, and testing, respectively, and only entities and relation types that appear in the earliest September knowledge
graph are retained. The default parameter settings all models are batch_size=1000, learning rate of the mlp (mlp_lr)=2e-
5, learning rate decay step (lrd_step)=1e-5, learning rate of the embedding (lr)=0.1, gamma=12 and hidden_size=200.
Specifically, ote_size=20 in NOTE model. For our final submission, we mix the training data and validation data.

3.2 Experimental Results

Table 1 shows the specific structure of all the models we use for ensemble, and report the final validation and test results
of our ensemble method.

4 Conclusion

In this paper, we present our solution for the final test. First, we ensemble different models for representation learning.
Specifically, we propose the NOTE model to make the training process steady. And the DeepWalk and the post-
smoothing technique are used to capture the graph structure information among learned embeddings. We also use
recent advance models including QuatE, RotatE, TransE. Second, we detail the manual feature engineering. The
selected features are used to adjust the predictions. The experimental results show that our solution achieves excellent
performance on the WikiKG90M dataset. For the final submission, we apply the same strategy on the test candidates in
final inference, and these features are not practical when considering ranking against all the entities.
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Table 1: Experimental Results: "-" means default parameter setting.

Model Settings Main Parameter Settings Validation Acc.
NOTE-1 - 0.9189
NOTE-2 batch_size=1200 0.9191
NOTE-3 lrd_step=2e5 0.9172
NOTE-4 lrd_step=4e4 0.9170
NOTE-5 mlplr=4e-5 0.9179
NOTE-6 lr=0.3 0.9181
NOTE-7 gamma=10 0.9160
NOTE-8 gamma=14 0.9173
NOTE-9 ote_size=40 0.9201
NOTE-10 hidden_size=240 0.9182

TransE - 0.8559
TransE post-smoothing 0.8800
RotatE - 0.8871
RotatE post-smoothing 0.8940
QuatE - 0.8846

DeepWalk - 0.6132

features (from training triples) - 0.8457
features (from validation candidates) - 0.7551

features (from training triples & validation candidates) - 0.8778

Ensemble the Above Models w/o features 0.9435
Ensemble the Above Models w/ features (from training triples) 0.9492
Ensemble the Above Models w/ features (from training triples & validation candidates) 0.9797
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